The mesoscale Hydrological Model
No Matches

E. Aarts and J. Korst. Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. Wiley, Chichester, 1990.


S. Bergström. Development and application of a conceptual runoff model for scandinavian catchments. Technical Report 7, SMHI Reports RHO, Norrköping, 1976.


K. Beven. Prophesy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour., 16:41–51, 1993.


G. Blöschl and M. Sivapalan. Scale issues in hydrological modelling: A review. Hydrol. Process., 9(3-4):251–290, 1995.


G. Blöschl, C. Reszler, and J. Komma. A spatially distributed flash flood forecasting model. Environ. Model. Soft., 23(4):464–478, 2008.


G. Blöschl. Scaling in hydrology. Hydrol. Process., 15(4):709–711, 2001.


V. T. Chow, D. R Maidment, and L. W. Mays. Applied Hydrology. McGraw-Hill, 1988.


R Courant, K Friedrichs, and H Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1):32–74, 1928.


L. Duckstein. Multiobjective optimization in structural design: The model choice problem. In E. Atrek, R. H. Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz, editors, New Directions in Optimum Structural Design, pages 459–481. Eds. John Wiley and Sons Inc., New York, 1984.


G. Hartmann and A. Bárdossy. Investigation of the transferability of hydrological models and a method to improve model calibration. Adv. Geosciences, 5:83–87, 2005.


Y. Hundecha and A. Bárdossy. Modeling effect of land use changes on runoff generation of a river basin through parameter regionalization of a watershed model. J. Hydrol., 292:281–295, 2004.


R. Kumar, L. Samaniego, and S. Attinger. Implications of distributed hydrologic model parametrization on the simulation of water fluxes at multiple scales and locations. In press. Water Resour. Res., 2012.


X. Liang, D. P. Lettenmaier, E. F. Wood, and S. J. Burges. A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res.-Atmos., 99(D7):14415–14428, 1994.


P. Pokhrel and H. V. Gupta. On the use of spatial-regularization strategies to improve calibration of distributed watershed models. Water Resour. Res., 2009. In press.


L. Samaniego and A. Bárdossy. Robust parametric models of runoff characteristics at the mesoscale. Journal of Hydrology, 303(1-4):136–151, 2005. doi: 10.1016/j.jhydrol.2004.08.022.


L. Samaniego, R. Kumar, and S. Attinger. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, 2010.


B. A. Tolson and C. A. Shoemaker. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1):W01413, 2007.